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Abstract—Architectural optimizations in general-purpose
graphics processing units (GPGPUs) often exploit workload
characteristics to reduce power and latency while improving per-
formance. This paper finds, however, that prevailing assumptions
about GPGPU traffic pattern characterization are inaccurate.
These assumptions must therefore be re-evaluated, and more
appropriate new patterns must be identified. This paper proposes
a methodology to classify GPGPU traffic patterns, combining a
convolutional neural network (CNN) for feature extraction and
a t-distributed stochastic neighbor embedding (t-SNE) algorithm
to determine traffic pattern clusters. A traffic pattern dataset
is generated from common GPGPU benchmarks, transformed
using heat mapping, and iteratively refined to ensure appropriate
and highly accurate labels. The proposed classification model
achieves 98.8% validation accuracy and 94.24% test accuracy.
Furthermore, traffic in 96.6% of examined kernels can be
classified into the eight identified traffic pattern categories.

I. INTRODUCTION

Architectural optimizations are generally evaluated using
representative workloads that test specific architectural capabil-
ities. Improved understanding of these workloads helps better
adapt optimizations to real-world behavior. Data exchange
patterns in these workloads significantly impacts performance.
Specifically, communication between processing elements (PEs)
and memory controllers (MCs) in general-purpose graphics
processing units (GPGPUs) can affect many components,
including network-on-chip (NoC) design, data prefetching
policy, etc. This communication is increasingly impacted
by dramatic increases in GPGPU PE count. It is therefore
imperative to accurately characterize GPGPU traffic patterns
to enable efficient hardware designs.

Communication patterns in GPGPUs differ from those in
traditional multi-core CPUs since GPGPU PEs request/receive
data packet independently. Limited work has considered
memory access or communication patterns in NoCs [1], [2],
[3], among which none exploited GPGPU traffic patterns;
researchers primarily consider many-to-few-to-many (M2F2M)
pattern, regardless of the application. As a result, these works
attempt to optimize GPGPU NoCs by widening the “few”
points [4] or by allocating NoC sub-networks for different
packet types [5]. In our testing, we find that, surprisingly, only
few applications exhibit this M2F2M pattern during execution
on GPGPUs, especially at the kernel-level. In contrast, many
patterns involve communication between specific PE-MC pairs,
rather than between many PEs and a few MCs.

Our testing motivates traffic pattern analysis in other appli-
cations, which may exhibit further pattern diversity. Detailed
evaluation on over 30 benchmarks verifies that the many-to-few-

to-many pattern is far less common than previously believed.
This crucial observation motivates reassessment of commonly
accepted GPGPU traffic patterns. We therefore provide insight
into these newly considered patterns, which may enable more
effective future optimizations in GPGPUs.

Existing methods for dataset classification, however, cannot
be directly applied to GPGPU traffic patterns without either sig-
nificant loss in classification accuracy or extremely inefficient
manual evaluation. Data collection granularity must be carefully
chosen since it affects information quality/detail and data re-
dundancy, both of which impact characterization accuracy. Data
normalization must also be considered since traffic pattern data
can vary in value from ten to millions. Mathematical techniques
such as correlation, eigendecomposition, and singular value
decomposition (SVD) have limited capabilities with respect to
rotations and translations, which commonly occur in the traffic
pattern dataset. Conventional supervised learning algorithms
require accurate ground truth labels, but these do not exist since
no prior research has characterized GPGPU traffic patterns.
Unsupervised learning models can help extract dataset features
without ground truth labels, but naive implementation is not
possible since raw traffic pattern data is not linearly divisible.

Exploiting these newly considered traffic patterns necessitates
novel methods to identify similarities and differences in traffic
behaviors. We propose a deep learning approach to differentiate
traffic patterns in GPGPU applications. This work also presents
a method to generate an appropriate training set based on strictly
verified traffic pattern data. To that end, we evaluate several
choices for data collection granularity. This raw data, however,
cannot be directly used to train our deep learning model. We
thus utilize a heat map algorithm to augment and normalize
the dataset, allowing convenient visual classification for dataset
labeling. Finally, labels are verified using the t-SNE algorithm.
This approach linearly divides, then projects data onto a low-
dimensional coordinate system, allowing visual inspection of
data clusters and potentially new traffic patterns. The entire
verification process iterates to refine the label for each data
point. The resulting deep learning model achieves 98.8%
validation accuracy and 94.24% test accuracy. Furthermore,
traffic in 96.6% of examined kernels can be classified into the
eight identified traffic pattern categories.

This paper is organized as follows: Section II provides
necessary background and highlights challenges in traffic
pattern identification; Section III details our data collection and
transformation techniques; Section IV elaborates our proposed
scheme for traffic pattern classification; Section V then presents
identified traffic patterns and model training results; Section
VI discusses related work; finally, section VII concludes.



TABLE I: Cumulative communication traffic of AlignedTypes

TABLE II: Kernel-1 communication traffic of AlignedTypes

PE1 PE30 PE31 PE56 PE1 PE2 PE3 PE4 PES
MC1 10683 276189 10683 10683 MC1 3 61033 3 0 3
MC2 10681 276187 10681 10681 MC2 0 0 61030 0 0
MC3 10680 10680 276186 10680 MC3 0 0 0 61030 0
MC4 10680 10680 276186 10680 MC4 0 0 0 0 61030
MCs 10680 1109310 10680 285336 MC5 0 0 0 0 0
MCeo 10680 10680 1109310 285336 MCeo 0 0 0 0 0
MC7 | 285336 10680 10680 1078800 MC7 0 0 0 0 0
MCS8 | 1353456 10680 10680 10680 MC8 | 30510 0 0 0 0

II. BACKGROUND AND MOTIVATION
A. Limited existing characterization

Unlike traditional many-core processors, PEs in GPGPUs
request data and perform computation independently, which
implies less mutual data exchange among PEs. Additionally,
the number of PEs typically dominates the number of MCs,
resulting in overall data exchange patterns between many PEs
and a few MCs. Specifically, many PEs generate read or
write request packets that are sent, through the NoC to be
processed by a few MCs. Following processing, reply packets
are sent back to the many PEs. This behavior is referred to as a
many-to-few-to-many (M2F2M) traffic pattern. Studies toward
GPGPU architecture optimization usually consider M2F2M as
the primary traffic pattern, so apply novel techniques to widen
the “few” points in NoCs [4] or try to exploit specific traffic
features [5] to improve NoC throughput.

Prevailing understanding of the M2F2M traffic pattern is
explained by results for cumulative data transfer across entire
benchmarks, as shown in Table I. Here, PEs are shown
on the horizontal axis, and MCs are shown on the vertical
axis. Cell values therefore indicate the number of packets
exchanged between a specific PE-MC pair. Data collection
at a finer granularity (e.g., kernel-level), however, reveals
dramatically different behavior. For example, Table II presents
the traffic pattern distribution for the first kernel of the
AlignedTypes benchmark [6]. At this granularity, each PE
primarily communicates with a single MC. This observation
suggests that M2F2M may not be the primary traffic pattern
in GPGPUs. We verify this hypothesis by conducting similar
tests across a wide range of benchmarks from Rodinia [7],
Parboil [8] and NVIDIA SDK [6]. Detailed analysis is, however,
required to identify the actual traffic patterns and associated
communication behavior of GPGPU workloads.

There is no prior research on characterizing traffic patterns
in GPGPUs besides coarse-grained understanding of M2F2M.
Some previous works have characterized PEs or memory related
metrics such as memory locality, latency hiding ability, branch
prediction efc., but not traffic patterns or machine/deep learning
models [9], [10], [3], [11]. Several works employ machine
learning algorithms to optimize GPGPU components such as
memory controllers, branch predictors, and data prefetchers
[11], [2], [?], [12], [13], [14], [15]. The proposed machine
learning algorithms in these works are, however, not suitable for
characterizing traffic pattern data due to idiosyncrasies in traffic
pattern data, which will be discussed later. Work by Giles et al.
[14], for example, proposed a neural network (NN) approach to
optimize NoC routing policies. Their model is very simple and
therefore inadequate for complex matrix data classification tasks
like traffic pattern characterization. Hashemi et al. [?] proposed
a recurrent neural network (RNN) to predict and prefetch

TABLE III: Kernel-57 communication traffic of AlignedTypes

PE1 PE10 | PE11 | PE12 | PE13
MCl1 0 18306 0 0 0
MC2 0 18306 0 0 0
MC3 0 0 18306 0 0
MC4 0 0 18306 0 0
MC5 0 0 0 18306 0
MC6 0 0 0 18306 0
MC7 | 9156 0 0 0 18306
MC8 | 9156 0 0 0 18306

cache lines from memory. Their model is not compatible with
traffic pattern data since individual data points do not have
any spatial or temporal context. Moreover, since there is no
related previous research, there is no labeled traffic pattern
dataset, thus no possibility for simple supervised learning
methods. Some other works focus on characterizing architecture
independent metrics such as PTXs, CTAs, dynamic instruction
count efc. by employing unsupervised learning methods such as
principle component analysis (PCA) or hierarchical clustering
to identify similarities across different benchmarks [16], [17],
[18]. These traditional unsupervised cluster methods, however,
have significant limitations and, as explained in section II-B,
cannot correctly identify key traffic pattern features. Therefore,
to identify traffic patterns in GPUs, a novel approach is needed
that can comprehensively and accurately recognize potential
patterns that exist during application execution.

B. Challenges

Tested benchmarks exhibit high variance in traffic patterns
depending upon the data collection granularity. Specifically,
the cumulative traffic pattern across an entire benchmark is
often not the same as the pattern at either specific cycle ranges
or during individual kernel execution. As will be discussed in
Section III, data collected at the kernel level retains important
features for specific benchmarks and is applicable across entire
benchmark suites. Data representation must also be considered.
In this paper, traffic pattern results are represented as matrices
for flexibility in data processing options, which are needed to
extract similarities and classify results accurately. Transforming
matrices to a suitable form also provides options for visual
analysis and could be used as an input for deep learning models.

Following considerations for granularity and representation,
we can group similar matrices based on observed charac-
teristics. Unfortunately, common mathematical techniques,
such as correlation, eigendecomposition, or singular value
decomposition (SVD), cannot be used to classify traffic pattern
matrices. In the first method, correlation coefficients measure
similarities of matrices. Traffic pattern matrices, however, are
not strictly correlated as matrices with similar traffic patterns



may differ in the position of occurrence (i.e., MC-PE pairs
are completely different). For example, the traffic patterns in
Table II (Kernel-1) and III (Kernel-57) are highly similar, as
they both present a down gradient, but with different degrees
and PEs. Correlation analysis would conclude that Kernel-
1 and Kernel-57 are not similar as correlation is position
dependent. Eigendecomposition is also problematic since traffic
patterns matrices are not square and also since results would
change with linear and horizontal shifts (yet represent the same
traffic pattern); these shifted matrices would yield different
characteristic roots, which is an undesired behavior. SVD has a
similar mathematical theory as eigendecomposition, thus also
not suitable for traffic pattern characterization. In summary,
more advanced methods are required to extract and analyze
traffic pattern information.

Existing unsupervised machine learning models including
PCA and t-distributed stochastic neighbor embedding (t-SNE)
are potential alternatives to cluster similar matrices without
initial human classification. Naive implementation, however,
does not yield good results, as illustrated in Figures 1 and
2. PCA results in Figure 1 do not help identify principle
traffic pattern types since most points lie on a single straight
line. Furthermore, this line contains several classes that can be
visually differentiated by inspecting the original data, indicating
that PCA is not suitable for this task. T-SNE projects high-
dimensional data onto 2D or 3D space to explicitly cluster
correlated data points [19]. Results for t-SNE, illustrated in
Figure 2, exhibit superior performance to PCA, with t-SNE
successfully identifying a few clusters with similar traffic
patterns (e.g., the two red circled clusters). Several other
clusters (e.g., the yellow, brown, and green clusters), however,
contain data points from dissimilar traffic patterns, indicating
that a naive t-SNE implementation still cannot provide high
accuracy traffic pattern clustering.

Supervised learning methods, such as support vector ma-
chines (SVMs), require data to be transformed into a format
suitable for input and also require labeling prior to training.
Using SVMs, data is classified based on curve fitting in a
high dimensional space. This approach does not, however,
provide feature extraction capabilities, which could be useful
for label validation and help identify missing traffic pattern
classes or incorrectly labeled data. Conventional supervised
learning methods are therefore, in general, not ideal for this
task.

Convolutional neural networks (CNNs) capture correlation
in dataset features using filters to extract key input features. A
simple CNN may include several convolutional layers, pooling
layers, and a fully connected layer (standard neural network
layer). Each convolutional layer extracts some representative
feature in the input, such as edges in an image. Specifically,
features are extracted by multiplying each filter cell with the
corresponding cell in the input matrix and summing the results.
Filters are translated across the input to extract all relevant
features, where each filter can learn to extract a specific feature.
These extracted features are then sent into a pooling layer for
downsampling to reduce matrix dimensionality and avoid model
overfitting. The final flattened output matrix serves as input to
the fully-connected layer, which produces a final multi-labeled
classification. Training a CNN still requires a labeled dataset
which, prior to this work, does not exist. We therefore require
a method to generate ground truth labels for traffic pattern data
to ensure high model accuracy following training.
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Fig. 1: PCA results for raw dataset.
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III. TRANSFORMING TRAFFIC DATA FOR DEEP LEARNING
A. Data collection granularity

Traffic pattern matrices are collected from the cycle-accurate
GPUGPUSim simulator (details in Section V), using an ideal
NoC configuration to eliminate any interconnection network
impact. This configuration is necessary since various topologies,
routing policies, allocation schemes, efc, can influence the
communication pattern. An ideal NoC allows collected data to
instead focus on the impact of the traffic pattern itself. This
data is collected, decomposed, and analyzed after benchmark
execution (accumulation pattern), at defined ranges of execu-
tion cycles (cycle-range pattern) and at the kernel-granularity
(kernel pattern). Results show that kernel patterns are most
appropriate in capturing traffic flow patterns during runtime
while retaining detailed information, as explained below.

Data collection granularity requires similar consideration
to address critical impact on data redundancy and accuracy;
fine-grained data collection can exhibit dramatically different
runtime traffic behavior than coarse-grain data collection on
the same benchmark. We find that fine-grained data collection
provides the most accurate representation so is used in this
paper. There are still several options. The most fine-grained
option is cycle-accurate, which generates a matrix at every
cycle. This method, however, is impractical since benchmarks
may run for tens of millions of cycles, leading to significant
dataset redundancy in which most matrices are sparse and
meaningless. Cycle-range patterns are an alternative, with two
typical policies to define the range of cycles for data collection.
The first, and most accurate, method involves manually tracking



TABLE IV: Example flattened dataset

| | PE1-MC1 | PE2-MCI | ...

| PE1-MC2 | PE2-MC2 | PE3-MC2 | ...

| PE1-MC8 | PE2-MCS | ... |

A_Kernel-1 15 2 15
A_Kernel-2 100 120 200
A_Kernel-3 25 3 25
B_Kernel-1 10000 500000 200
B_Kernel-2 1000 2000 500

all benchmark cycles, then defining continuous cycle ranges
with similar traffic patterns for data collection. This approach
is impractical since it would require manual action at the cycle
level. A second approach instead uses pre-defined cycles based
on a fixed number or percentage of total cycles. Consequently,
this approach is much faster but not necessarily accurate.
Consider that the optimal cycle count granularity may differ
across benchmarks. Using intervals of 10,000 cycles, CFD
[7] has 2268 data points while Gaussian has only three, so
information will likely be lost. This issue could potentially be
addressed by defining a fixed percentage, but this may still lead
to information loss. Again, considering CFD, if data collection
occurs at 1% cycle count intervals, 22,636,606 cycles are
included, which is likely too many to represent fine-grain traffic
patterns. Alternatively, we can consider a fixed cycle count or
percentage of cycles for each benchmark. This approach is still
too time consuming since it requires manual evaluation for
each benchmark. Overall, cycle-range patterns are not feasible
since they require either significant manual evaluation (to avoid
dataset redundancy) or compromise information quality.

Kernel patterns offer a solution for both issues; traffic
pattern matrices generated after kernel execution retain detailed
traffic information with low dataset redundancy. Specifically,
individual kernel executions usually perform a similar task
every time the kernel is executed (e.g., loading data or
performing a specific computation). Therefore, within a single
kernel, traffic flow is nearly identical so little information is
lost. Kernel execution is also long enough to ensure sufficient
detail (no completely sparse matrices). As an additional
benefit, architecture optimization based on kernel pattern data
can improve execution for all kernels with similar behavior.
Lastly, there are more than 10,000 total kernels across tested
benchmarks, providing an acceptable training set size.

Raw data matrices generated during benchmark execution
are, however, unsuitable for deep learning models since matrix
are too small and not normalized. We propose a combined data
augmentation and normalization scheme to both enlarge matrix
dimensions (while retaining feature accuracy) and eliminate
data redundancy to speedup model convergence.

B. Heat Map Data Transforming

Effective deep learning application requires consideration for
data format (both representation and actual values). Briefly, a
compatible data format is not necessarily an ideal format. The
raw traffic pattern dataset has two major issues: obscure features
and not normalized matrices. Data is gathered on an architecture
with 56 PEs and 8 MCs, so matrix dimensions are 8 x 56. These
dimensions are much smaller than the typical input size for
CNN models (224 x 224 for VGG-16 [20]). Consequently,
traffic pattern features may be obscured or even undetectable,
reducing model accuracy. This problem can be addressed by a
data augmentation scheme. Simply enlarging raw matrices is
not viable because it radically alters the meaning of individual
matrix cells. In the raw format, cell values indicate the number
of packets exchanged between a specific PE-MC pair. In a

2 15 .. 15 2
220 240 800 820
3 25 .. 25 3
200 20 100000 40
200 15 100 500
v |

Visual Identification — CNN Training —{ T-SNE Validation

(Get prelim classification)  (Get flattened row vectors) (Get refined labels)

Fig. 3: Proposed methodology to identify traffic patterns

scaled format, these non-zero values would be expanded to
other cells, which is not appropriate.

Another major challenge is data normalization. Normaliza-
tion reduces the adverse impact from diverse data scales and
focuses the model on significant traffic patterns. A conventional
normalization scheme would flatten each matrix into a row
vector, combine the resulting row vectors together into a new
matrix, and finally normalize each column individually. Nor-
malizing across row vectors (the original matrices) implicitly
assumes that all features (elements in the matrix) use the same
scale for data. Traffic pattern data in this paper, however, is only
meaningful in the context of the original matrix. This technique
would therefore distort the original meaning of the data. Table
IV demonstrates this issue with a simple example dataset.
Here, rows in the table correspond to the flattened matrices
from individual kernel executions. Before normalization, it
is easy to observe that Kernel-1 and Kernel-3, both from
example benchmark A, have the same pattern in which odd
index PEs have heavier traffic than even index PEs. Kernel-
2 exhibits a separate pattern in which traffic load increases
from the first PE to the last and also increases with the MC
index. Conventional normalization techniques (such as min-
max [21] or z-score [22]) would dramatically shrink several
columns (such as PE1-MC1 and PE2-MC1) to accommodate
the large packet counts in B_Kernel-1. Consequently, other
values in those columns (such as those for A_Kernel-1) would
become very small, reducing the likelihood that patterns can
be accurately recognized. Various columns would also scale
differently, again altering the meaning of the original values.

We propose using grayscale heat maps to both augment and
normalize the traffic pattern dataset. These heat maps (such as
Figure 6 shown later) code elements in a matrix based on their
relative values [23], generating images in which each block
(group of identical pixels) corresponds to a cell in the original
matrix. Using 8 x 8 blocks for every original one “pixel” cell
transforms the original 8 x 56 matrices into 64 x 448 images.
These larger images can improve recognition accuracy in deep
learning models and simplify the visual identification and
validation process introduced in the next section. Heat maps
also naturally eliminate normalization problems because all
pixel values range from 0-255. Block intensity is proportional
to the original cell values, with the highest value cell(s) white
and the lowest value cell(s) black. Each image is generated with
respect to a single matrix, thus limiting any negative impact
due to different scales for packet count in various kernels.

Transforming raw data matrices into heat map images
represents half of the dataset generation task. Labels must
still be generated for each image in order to train the CNN
model using backpropagation.
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IV. IDENTIFYING TRAFFIC PATTERNS

A. Overview

The proposed scheme for traffic pattern labeling is depicted
in Figure 3. As previously mentioned, effective neural network
training requires accurate labels for data points since the
training process relies on the loss (difference) between predicted
labels and ground truth labels. The labeling process generates
accurate labels in a three-step procedure of visual identification
and label validation. In the first step, labels are generated
through visual identification (i.e., looking at heat maps for
dominant patterns), which is a common step in many well-
known image datasets such as CIFAR10 [24] and MNIST [25].
This step is required since there is no prior research on these
diverse GPGPU traffic patterns.

The resulting pre-labeled dataset is then used in label
validation. In this step, the CNN is trained on the pre-labeled
dataset. Following initial training, we obtain a flattened vector
representation for each data point by capturing the output from
“Flatten” in our CNN model (Figure 4; explained shortly).
Crucially, this representation is linearly divisible due to non-
linear neural network activations (explained in section IV-C).
In the third step, this flattened representation is combined
with labels from the pre-labeled dataset and fed into a t-
SNE algorithm. This algorithm projects the high dimensional
traffic data onto a 2-D coordinate system, allowing further
verification for existing labels. This projection further enables
visual inspection of traffic pattern distributions to determine
if the clusters that have been identified so far are appropriate.
Poorly defined clusters or mixed distributions may suggest
the presence of incorrect labels, missing categories, etc., all of
which can be corrected in a subsequent iteration(s), as indicated
in the back arrow in Figure 3.

B. Visual Identification

Grayscale heat maps are preferred over RGB heat maps since
grayscale avoids unnecessarily augmenting the raw 2D matrices
and additional noise that can impact classification accuracy.
This representation is used for initial visual identification to
generate the pre-labeled dataset. During the labeling process,
some patterns are easily identified and labeled, such as the
column pattern presented in Figure 6 and the row pattern
presented in Figure 7. Other patterns, however, are difficult
to differentiate, leading to potentially inaccurate initial labels.
This labeling alone is therefore insufficient and must be strictly
validated and adjusted to ensure the ground truth for every
matrix is reasonable. Further use of visual verification after
t-SNE is described in section IV-D.

C. CNN Details

Subsequent label validation using t-SNE requires a linearly
divisible dataset, which can be obtained from a CNN model.
A typical CNN model contains several convolution layers,
pooling layers, and a standard neural network classifier. As
shown in Figure 4, the input (e.g., a heat map image), passes
through several convolution layers to compress and extract
key features such as edges. Pooling layers then downsample
extracted feature images to both shrink the final decision
vector size and focus the neural network on relative feature
positions rather than specific locations [26]. Following several
convolution-pooling combinations, extracted feature images can
be transformed into flattened vectors that are relatively small,
but retain significant feature information. The final stage is a
classical neural network containing an input layer, some hidden
layers, and an output layer. A softmax activation function is
chosen for the output layer to easily characterize the relative
likelihood of various traffic pattern classes. More details of the
CNN architecture used in this work are presented in Figure 4.
This model contains eight total layers. The first two convolution
layers each uses 32 filters of size 5 x5 and a stride length of
1, generating feature map matrices of dimension 32 x 60 x 444
and 32 x 54 x 440, respectively. The subsequent max-pooling
layer uses a 3 x 3 filter with a stride length of 1 to downsample
feature map matrices from 32 x 54 x 440 to 32 x 18 x 146.
Extracted images are then flattened into 84096 x 1 vectors and
fed into the neural network (NN) layer for classification.

Note that output vectors from the “Flatten” layer are
guaranteed to be linearly divisible, as the non-linear activation
functions (i.e., ReLu [27], tanh, etc.) in previous layers provide
non-linear transformation from the original hyperspace, thus
“twisting® and projecting the data into a linearly divisible space.

D. T-SNE Validation Scheme

Validation using t-SNE projects the CNN-generated decision
vector for each data point onto a 2-D coordinate system that is



Fig. 6: Column Pattern (e.g., Gaussian, Kernel-1)

Fig. 10: Diagonal Pattern (e.g., AlignedTypes, Kernel-1)

Fig. 7: Row Pattern (e.g., BFS, Kernel-10)

Fig. 8: RC Pattern (e.g., SortingNetworks, Kernel-6)

Fig. 9: Group Pattern (e.g., Reduction, Kernel-8)

suitable for human interpretation [28]. Ideally, this projection
will separate traffic patterns into clearly defined (and separate)
clusters; any new clusters therefore imply new traffic pattern
categories. Dataset labels can then be adjusted to better match
any newly identified clusters. Following label revision, this
adjusted dataset can be used to train a more accurate CNN
model that will then extract more appropriate features from
traffic pattern heat maps. This iterative process ensures that
labels will eventually be correct and the CNN model will be
highly accurate.

T-SNE application in Section II-B did not provide acceptable
results because t-SNE cannot linearly classify the raw dataset.
Specifically, considering every cell in the original traffic matrix
as an axis in a hyperspace, both rotations and translations could
be interpreted as new patterns since they will be randomly
distributed in the hyperspace. It is therefore critical that the
dataset is made linearly divisible so that t-SNE can project
the dataset onto a human interpretable coordinate system. As
previously mentioned, vectors generated by the CNN “Flatten”
layer are linearly divisible and each raw data point corresponds
to only one such vector, indicating that the original heat map
image dataset can be replaced by a new dataset of these
vectors. The clusters obtained from running t-SNE on this
linearly divisible dataset are presented in Figure 5. In this
representation, there are nine distinct clusters (red circles).
These clusters, however, still contain points from different
categories (i.e., different labels). This phenomenon likely
results from background noise and inherent visual similarities
between traffic patterns. These points are specifically targeted
for further visual inspection to ensure that replaced labels are
reasonable. The overall three-step procedure iterates several
times to continuously improve dataset label accuracy.

V. RESULTS AND ANALYSIS
A. Traffic Patterns

Figures 6 to 13 represent eight different categories that
are identified and verified by following the aforementioned
label creation process, including: 1) Column pattern; 2) Row
pattern; 3) Row+Column pattern (RC pattern); 4) Group pattern;
5) Diagonal pattern; 6) Stair pattern; 7) Split pattern; 8)
Checkerboard pattern. We analyze these traffic categories in
detail to identify underlying causes and better understand their
behavior at the architectural level.

Fig. 13: Checkerboard Pattern (e.g., CFD, Kernel-45)

1) Column pattern: A column pattern, presented in Figure
6, comprises traffic from one PE to all MCs, leading to a PE
send/receive hotspot. This pattern results from kernel execution
involving few thread blocks; all thread blocks are then assigned
to one PE that communicates with all MCs. A special case
occurs when more than one MC is not involved, which may
occur when data addresses are not distributed across all memory
chips.

2) Row pattern: Figure 7 illustrate a row pattern in which
only 1 MC communicates with all PEs. This pattern is generated
by imbalanced memory access or data address mapping
schemes. For example, in BFS, every kernel processes one
graph layer. Consequently, memory accesses are concentrated
to very few MCs that contain the data for nodes in that layer.

3) RC pattern: A typical RC pattern, shown in Figure
8 combines the previous row and columns patterns. In this
pattern, one MC is heavily accessed by all PEs, but some PEs
still communicate heavily with all MCs. The row pattern, as
previously mentioned, could be established due to imbalanced
memory accessing. The column pattern here could be caused
by different reasons. A main reason is that the thread block
scheduling policy assigns more thread blocks to a few specific
PEs based on a special mechanism. For example, if some PEs
consistently finish their assigned thread block faster than other
PEs, the faster PEs would tend to be assigned more thread
blocks and therefore communicate more heavily with all MCs.
This RC pattern can also be considered as a special case of
M2F2M pattern, but with one or more hotspots.

4) Group pattern: Figure 9 depicts a group pattern in which
a continuous group of PEs communicate with all MCs. The
group pattern can also be viewed as an extended case of the
column pattern. Labels for the two patterns, however, are kept
separate since their visual appearance can differ substantially
and are therefore easily separated during manual labeling. This
distinction is further validated in the following subsection.

5) Diagonal pattern: In a diagonal pattern, each MC has
a corresponding PE array with which it communicates, as
illustrated in Figure 10. The index of the first PE in these
arrays is continuous (in Figure 10, the start indices are 0, 1, 2,
3,4, 5, 6, and 7), and every array has the same interval (in
Figure 10, the interval is 8). This distinctive pattern results
when each thread block processes a part of the dataset and the
whole dataset is evenly distributed in all memory chips. Many
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diagonal patterns are possible by varying the PE interval or start
PE indices. Regardless, the array intervals should be identical
and the start PE indices should be an increasing sequence.

6) Stair pattern: The stair pattern, shown in Figure 11,
is present in the histogram benchmark for example. In this
case, data is distributed relatively evenly across memory
chips rather than concentrated in a single chip. Additionally,
thread blocks processing the same data are assigned to a
continuous and adjacent set of PEs. Variations on this pattern
can translate horizontally or vertically due to differing data
storage circumstances.

7) Split pattern: Figure 12 presents a case for the split
pattern. This pattern arises when individual PE communication
is restricted to either MCs in the upper half (index 0-3) or
the lower half (index 4-7), but not both. This situation results
from a combination of thread block scheduling policies and
data storage positions in which thread blocks processing half
the data are always scheduled to certain index (either odd or
even) PEs.

8) Checkerboard pattern: The checkerboard pattern is a
special pattern that, in testing, only appears in CFD. This pattern
has similar features to the diagonal pattern (with an interval
of 1), but is classified separately due to its unique formation
circumstances. Unlike the diagonal pattern, checkerboard forms
due to intra-PE communication through memory chips. Light
block pairs therefore indicate that, for a specific PE, either
odd or even index memory chips contain the data needed from
other PEs.

Figure 14 presents the final t-SNE distribution with each
color representing a specific traffic pattern. Several important
conclusions can be drawn from this figure. First, we can
observe that there are six primary categories that are all
relatively centralized. The remaining two patterns, including
stair and RC, are less conspicuous because these patterns are
far less common in our dataset. The stair pattern, in particular,
is distributed similarly to the row pattern, confirming the
similarities recognized in visual inspection. Specifically, the
stair pattern gradient may be too shallow to recognize and,
consequently, may be recognized as a straight line.

B. Model accuracy and coverage

The kernel-level communication dataset is collected using
GPGPUSim v3.2.2 with a recent GPGPU architecture and key
parameters listed in Table V. This configuration uses an ideal
network-on-chip (NoC) in which packets are transferred directly
to their destination in one cycle, ensuring that traffic pattern data

Fig. 15: Final features (bottom image) used for making decision
on the Diagonal pattern

TABLE V: Key Parameters in Simulation.

Field Value
Processing Elements 56, 1126MHz
Shared Memory / Element 48KB
L1 Cache Size / Element 16KB
L2 Cache Size / Element 2MB

# of Last Level Cache Banks 8
Memory Chips 8, FR-FCFS
Network-on-Chips Ideal

is not influenced by the NoC architecture. Testing also confirms
that the eight major traffic pattern categories are unaffected
by the number of PEs or MCs, implying that conclusions are
applicable to diverse GPGPU architectures. Recall that the
pattern identification flow (Figure 3) is architecture agnostic,
indicating that future GPGPU architectures will be compatible
with our methodology as long as it is strictly followed. Finally,
the specific prediction model (CNN in our work) also does not
impact these categories, because classifications are obtained
and validated separately; validation requires just the linearly
divisible flattened vectors. This classification process can
therefore be adapted to any other prediction model that can
generate these vectors.

Significant features learned by the CNN model can be
visualized by tracing output activations back to specific input
elements. As an example, the feature map for a diagonal pattern
is shown in Figure 15. The top image is the original input and
the bottom image represents the features extracted by the CNN
model. As expected, dots in the feature map trace the diagonal
edges of the original image.

All heat map images are randomly assigned into training or
test dataset with a 5:1 ratio. As previously mentioned, several
categories are very similar, which might be problematic if a
naively trained model is used, because the training dataset
is not large enough to successfully differentiate some similar
images. Consequently, the model will overfit easily, meaning
that it can only classify a particular dataset and will behave
unpredictably when new data is introduced. Figure 16 presents
the training and validation loss across 10 epochs for such a
problematic situation. Validation loss crosses training loss at
epoch 2, indicating that the model begins to overfit at epoch
2. In contrast, K-fold cross validation is an alternative method
that has been proven to perform better with limited data that is
similar in nature [29]. Figure 17 plots training and validation
loss using the k-fold cross validation with 10 folds. Our final
model uses the best weights obtained using this approach
and achieves 98.8% validation accuracy and 94.24% test set
accuracy. Model coverage is another significant criteria that
expresses how well kernels are classified into the identified
traffic pattern categories. In our tests, the traffic patterns in
11,655 out of 12,064 kernels are correctly classified, giving a
96.6% coverage rate. The remaining 409 kernels are considered
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to be typical M2F2M patterns, but most can still be recognized
by our trained model. Figure 18 demonstrates Kernel-36 in
SPMV [8]. According to our CNN model, this traffic is 47.83%
similar to a diagonal pattern and 40.18% similar to a column
pattern. Specifically, the left part of Figure 18 has diagonal edge
(left two red circles) and the third circle clearly emphasizes an
edge that appears in column patterns. However, those mixed
pattern kernels account for only 3.4% of all the kernels.

C. Discussion

Several GPGPU architectural optimizations can benefit from
improved traffic pattern characterization. Power-gating is a
representative example. Long wake-up delays in traditional
approaches constrain NoC throughput [30], [31]. Router wake-
up could, however, be precisely scheduled given sufficient
information about future traffic. Routers could also be powered
down at more appropriate times based on this information,
thus simplifying decision hardware and further reducing power
and area. Another application is data prefetching. Prefetching
policies could be simplified by collecting fewer cycles of traffic
information while making higher accuracy predictions that
improve performance. Again, prefetch hardware complexity
(and therefore area/power) can be reduced due to improved
knowledge of traffic pattern. NoC research in GPGPUs, as
mentioned, has primarily considered optimizations for many-
to-few-to-many traffic patterns. Given that only around 3% of
kernels exhibit this pattern, there is likely significant potential
for improvement by additional optimizations for the eight major
patterns identified in this paper. Other improvements may also
be exploited by integrating traffic pattern characterization in

Fig. 18: SPMV Kernel-36 traffic pattern image

warp scheduling, memory load-balancing, application-specific
optimizations, and many other techniques.

VI. RELATED WORK

Prior work has applied machine learning (ML) to architec-
tural optimization in both traditional CPUs and throughput
processors. These works are all entirely orthogonal to our
proposed work on traffic pattern characterization. Hashemi et
al. proposed a RNN-based data prefetcher to achieve higher
fetch precision [1]. Ipek ef al. instead applied reinforcement
learning to memory controllers, enabling improvements in MC
efficiency. Related work has also explored machine learning
application to interconnection networks. For example, Sakr
et al. employed three different ML models to learn memory
access patterns and dynamically reconfigure the interconnection
network architecture [2]. Giles ef al. used a simple neural
network to generate control bits for optical multistage NoCs
[14]. Branch prediction is another popular area for research in
ML application since the task is easily represented in terms
of actions and goals. For example, Jimenez et al. proposed
a perceptron-based model for dynamic branch prediction to
improve prediction accuracy [11]. Work by Blanton et al.
has even used online learning in self-evolving systems that
continuously optimize system performance. Work focusing
on throughput processors, in particular, could benefit from
improved understanding of traffic patterns in GPGPUs.

Several works have also applied ML to workload char-
acterization. Wu et al. proposed a ML model to predict
GPGPU power and performance across many kernels, enabling
significant execution time savings compared to cycle-accurate
simulation [15]. Other works have used ML to characterize
architecture independent metrics such as parallel thread execu-
tion (PTX) and dynamic instruction count for various workload,
thereby allowing existing workload to be categorized based
on architecture independent behaviors [9], [3], [10], [17], [16],
[32], [33]. These works commonly use PCA or hierarchical
clustering. Recent deep learning models, however, have been
proven to provide higher classification accuracy on complex
image datasets. Our work therefore utilizes CNNs to perform
traffic pattern classification.

VII. CONCLUSION

Accurate traffic pattern characterization in GPGPUs enables
effective optimization in network-on-chip (NoC) design, data
prefetching policy, etc. We show, however, that prevailing
assumptions about GPGPU traffic patterns are inaccurate at
fine-grain execution scales, and therefore require reassessment.
The proposed scheme for traffic pattern classification addresses
this problem using a three step procedure. First, traffic pattern
data is transformed into heat maps. Next, a convolutional
neural network is trained to generate flattened feature vectors.
Finally, t-SNE projects high dimensional traffic pattern feature
vectors into 2-D clusters, allowing visual verification. The
resulting model achieves 94.24% accuracy in traffic pattern
classification on the test dataset. Furthermore, these patterns
are highly representative of real-world benchmarks, with over
96% of kernels exhibiting these patterns.
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